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Abstract 
On the basis of a common characteristic observed in 
previously derived formulas for the evaluation of 
triplet phase invariants from either isomorphous 
replacement data or anomalous dispersion data, it 
has been found possible to combine mathematical 
expressions, certain differences of magnitudes, arising 
in the analysis of the two techniques to form a myriad 
of new mixed formulas. The common characteristic 
is that the various types of differences of magnitudes 
that are involved in the formulas are all definable in 
terms of the heavy-atom structure. The formulas 
involve the mixing of terms arising from several 
isomorphous derivatives or from a combination of 
such terms with various types of terms arising in 
anomalous dispersion or the mixing of various terms 
arising in anomalous dispersion alone. The evaluation 
of the triplet phase invariants is facilitated by the use 
of a simple rule, called the General Rule, that is 
generally applicable to the case of one predominant 
type of anomalous scatterer. In the case of more than 
one predominant type of anomalous scatterer, a 
slightly more complicated calculation is required and 
is described. Test calculations show that a very large 
number of invariants may be evaluated by these 
means with reliabilities that are potentially high, but 
depend, of course, on the reliability of the experi- 
mental data. A benefit from having the large variety 
of formulas is that triplet phase invariants can be 
evaluated at many points throughout the range -Tr 
to 7r and their reliability is enhanced because much 
information is obtained from only the largest differen- 
ces of magnitudes. 

Introduction 
Formulas for the evaluation of triplet phase invariants 
from isomorphous-replacement data have been 
derived from special mathematical and physical 
characteristics of the isomorphous replacement tech- 
nique (Karle, 1983). Similarly, by making use of 
mathematical and physical characteristics of the 
anomalous dispersion technique, formulas have been 
obtained for the evaluation of triplet phase invariants 
from anomalous dispersion data at one wavelength 
(Karle, 1983b) and at two wavelengths (Karle, 1984c). 

The formal characteristics of the analysis for 
both techniques, isomorphous replacement and 
anomalous dispersion, are quite similar, thus facilitat- 
ing the development of a very large number of for- 
mulas that not only are formed from a combination 
of the two techniques but also may be comprised 
solely of hybrid combinations of terms from more 
than one isomorphous derivative or from the large 
variety of terms that occurred in the earlier work on 
anomalous dispersion. 

The characteristics of interest concern observations 
related to the differences of magnitudes of selected 
types of structure factors and also the expected values 
of triplet phase invariants associated with the struc- 
ture of the heavy atoms acting as heavy-atom replace- 
ments in isomorphous replacement or as anomalous 
scatterers. The conceptual basis for these observations 
and their nature will be described in general terms in 
the next section. 

The result to be obtained in this paper is a table 
from which a large variety of terms can be selected 
to form triple products of magnitude differences and 
sums of phases that are the essence of a large number 
of different formulas for evaluating triplet phase 
invariants. The virtue of having a large number of 
different formulas is that a large number of the most 
reliable evaluations can be performed and they are 
distributed among many points that range from -zr  
to ~-. 

Conceptual basis 
The concepts that form the basis for generating the 
large variety of formulas are illustrated in Fig. 1. This 
figure has already provided the basis for the develop- 
ment of formulas for evaluating triplet phase 
invariants from isomorphous-replacement data 
(Karle, 1983) and from anomalous dispersion data in 
the case of single-wavelength data (Karle, 1984b)and 
multiple-wavelength data (Karle, 1984c). The symbol- 
ism associated with the letter ff  represents the eight 
cases listed in Table 1. The first case, labelled with i, 
represents isomorphous replacement, the next three 
(1-3) represent single-wavelength anomalous disper- 
sion and the last four (4--7) represent multiwave- 
length anomalous dispersion. Contained within this 
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Table 1. Quantities involved in the evaluation of  triplet 
phase invariants by use of  the General Rule 

The symbols m~l~,  m~2h and m~3,h are defined by the correspond- 
ing entries in columns 2, 3, 4, respectively, for m = i, 1, 2 , . . . ,  7. 
The symbol i refers to isomorphous replacement whereas the 
numerical values for m refer to different cases for anomalous 
dispersion. The various symbolic entries are defined in the text. 
Note that  ease i may refer to a number  of isomorphous derivatives, 
il, i~,. . . ,  and that cases m = 1-7 may refer to data collected at a 
variety o f  wavelengths. 

Case, 
m m~;l,b m~;2,h m~3,h ~mj fmj 

i Fhp. F~p Fh. 0 f~.h 
/ 7r/2 iff~p~ + 

1 F~ph F*p~ F~ph-F:*Pa ( -  ~r/2 if f ~ ; -  ff%~ 

: 0  i f . f~  + 
2 Fap h + F~*~ 2F~ F~p h + F~p~ [ ~  iff~,o~- ff~ 
3 Fxo h F~ F~ph a ~Apj f~Apj 

a a +,+ +,+ 
5 Fa, h + Fx2 h 2F~ Fx~ h + Fx~ h 8xv~2 j f~x~,~2] 
6 Fx, ~ F*zf " r;a ~a._ +.- +,- 

* 2F~ ~2~ ~_ ~a .  -,+ -,+ 7 F~,h + Fa~f. --X,h -- --x~fi 8~,~j f ~ j  

symbolism is a large number of additional 
possibilities that would arise if there were data from 
several different isomorphous-replacement experi- 
ments and from anomalous-dispersion experiments 
performed at a number of wavelengths. The case of 
m = i, for example, could be extended to 6, i2,.. ,  if 
there were several isomorphous derivatives. 
Evidently, the other cases are a function of 
wavelength. 

The quantity FheM is the structure factor associated 
with the substituted material, for example, a 
macromolecule with heavy-atom substituents, Fhe is 
the corresponding structure factor for the unsub- 
stituted material and FhH is the corresponding struc- 
ture factor for the substituents. The quantity F~h is 

Im 

/ Re 

Fig. 1. An illustration of  the vector equation ~:~.h = ~2.h + ~3,h" 
The largest magnitude differences, U ~ , h ] -  l~:2,h][, are associated 
with the largest possible values of  1~3.hl- This case is represented 
by the triangle formed from the solid lines. The placement of 
the dot ted line representing an alternative position for ~2,h would 
not  be possible if the magni tude of  the dotted line connecting 
it to ~, .h would exceed the maximum possible value. This implies 
that, for the largest magnitude differences, the phase angles for 
~l.h and ~2.h do not  differ by much. 

the structure factor associated with a measured 
intensity at wavelength Ap and includes the contribu- 
tion from anomalous dispersion, F~, is the corre- 
sponding structure factor when the contribution from 
anomalous dispersion is omitted and F~ph is the cor- 
responding structure factor that represents only the 
contribution from anomalous dispersion at 
wavelength Ap. The quantities are related by 

Fhen = Fhp + Fhn (1) 

and 

Faph = F~ + F~ph. (2) 

It follows from (1) and (2) that, for all the cases in 
Table l, 

m~rl,h ----- m~Z2,h ÷ m ~i~:3,h • (3)  

The atomic scattering factor for the qth atom that 
scatters anomalously is given by 

fq, b =f~,h +f~ +/f~, (4) 

where fq, h is the normal atomic scattering factor and 
fq and f~ are the real and imaginary parts of the 
anomalous correction, respectively. The entries for 
8mj in Table 1, items 4---7, will be defined below. They 
play a key role in the evaluation of the triplet phase 
invariants. The fmj will also be defined below. They 
play a significant role when there is more than one 
predominant type of anomalous scatterer. 

As indicated above, the insights afforded by Fig. 1 
have already provided the basis for the evaluation of 
triplet phase invariants in isomorphous-replacement 
and anomalous-dispersion experiments. The insights 
are also applicable to the derivation of the combina- 
tion formulas to be described. For convenience, there- 
fore, the characteristics of Fig. 1 are repeated here. 

The solid lines forming the closed triangle in Fig. 
l represent the vector equation (3), with the pre- 
subscript m omitted. Given, for example, the vector 
:~,h as in Fig. 1, the dotted line of radius ]3~2,h1 could 
be a possible location for 3~2,h, but not necessarily. It 
would not be possible if the dotted line connecting 
this vector with 3~l,h would have to have a magnitude 
that exceeds the maximum possible value for 13~3,h[. 
The implication of this observation is that if the largest 
differences II~,,d-I~=,hll were selected from a data 
set, they would be associated with the largest possible 
values of [~3,h] and ~ .h  and ~2.h would have phases 
that do not differ greatly. We formalize these observa- 
tions and their implications as follows: 

1. The largest magnitude differences, [[~,h[-- 
[~2,h[], are associated with the largest values of the 
magnitudes 1~3.~1- 

2. Triplet phase invariants associated with the 
largest 1~3,h~,k~3,<~÷~)l can be expected to have 
values close to zero, especially for simple 'heavy- 
atom' structures. [The triplet phase invariants refer 
to the non-anomalous portion of the scattering, (~,h + 
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?i F1 ° ~Pj, k + ~0j.(a+~)), additional phase functions arise from 
the anomalous portion of the scattering and can be 
readily evaluated from appropriate tables.] 

3. For the larger values of I I & , l -  I&,l l .  the phase 
of ~,.h will differ little in value from the phase of ~2, .  

Theory 

The development of the combination formulas 
depends upon the analysis of the triplet product that 
follows from (3), 

( , &  .h -- , , ~ , ) ( ~ ,  ,k - ~ 2 , k ) ( ~ ,  ,~ +~) - w~2,~ +~)) 
o~ = ( . ~ 3 , ) ( ~ , ) ( ~ . ~  +~)), (5) 

where the u, v and w can independently assume any 
of the eight values of m and their corresponding 
definitions, as given in Table 1. The left side of (5) 
may be rewritten 

l,,~.h vO~t,k w'-~'l,(~+[.)l 
x exp [i(.q~,h + o~O~,k + ,~0 ,,(s+g))] 

- l.,&, o & ,  ~&.<~+~)l 

x exp [i(,,q~,h + ~¢P,,k + .~P2,¢~+t))] 

- I ,&.h o~=.k ~ ~.~ +~)1 

x exp [i(~Pt,h + o~P2,k + .~P t,(~+t))] 

× exp [i(,,~p~. + o¢PE,k + w~P:,(~+~.))] 

i = -- u,.~/e2,h v~Zl,k w,-~/el,(~+K)l 

x exp [i(.~%,h + ,,~P ~,k + ~P ,,(~+K))] 

X exp [i(~P2,h + o¢,,t, + ~P2aa+t))] 

× exp [i(.,~:, + o~:.k + w~O,.(~+~))] 

xexp [i(,¢2,h + ~¢2,k + ~¢2,(~+~))]. (6) 

On the basis of observation 3 above, when the 
appropriate magnitude differences are large, the trip- 
let phase invariants in (6) may be replaced by some 
average value, (t~hk), and then (6) may be rewritten 

( I . & , l -  I .&, l ) ( I  o & , l -  I o & , l )  

exp (i(tq~hl,>), (7) 

where the components of t are u, v and w, i.e. t - - (u ,  
v, w). By comparing (7) with the right side of (5) and 
making use of observations 1 and 2, the opportunity 
for evaluating ( t~hk)  will ensue for the numerical 
combinations of eight cases listed in Table 1. It is 
because ,,~:3.h is definable in terms of the 'heavy-atom' 
structure for all cases m given in Table 1 that it is 

possible to make combination formulas in which u, 
v and w can independently assume any value of m. 
If desired, the evaluation may be applied to those 
triplet phase invariants in (6) that are associated only 
with the largest products of ~: magnitudes. Previous 
calculations (Karle, 1983) have indicated that an 
increase in accuracy may be achieved in this way, 
although it may not be of any great practical signific- 
ance to do so. 

When there is a single predominant type of 
anomalous scatterer, it is a simple matter to evaluate 
the large variety of triplet phase invariants by use of 
Table 1. Otherwise, somewhat more complicated and 
somewhat approximate calculations are required 
unless the structure of the anomalous scatterers is 
known. The information in Table 1, however, is still 
pertinent to the more complex calculations. 

Definitions of appropriate mathematical quantities 

Since the left side of (5), as approximated by (7), 
is to be compared with the right side of (5) as a means 
for evaluating the average triplet phase invariants 
(tqbhk), definitions for the m,-~3,h will now be given. 
The definitions are based on the results of previous 
mathematical analyses (Karle, 1983, 1984b, c). 

We have the general definition 
q+l 

m~Z3,h : ~ (fmj/f~,h) exp(iSmj)F~nh, (8) 
j=2 

where fmj and 8mj are given in Table 1 for the various 
cases, f~h is the normal atomic scattering factor for 
the j th  type of anomalous scatterer in a substance 
containing q types of anomalous scatterers (the sub- 
script 1 is reserved for atoms that essentially do not 
scatter anomalously) and the F~h are the structure 
factors for each type of anomalously scattering atom. 
Additional definitions required for the use of Table 
1 are 

f~,,j=(f'x~j +f[~j),/2 (9) 

aApj = tan- '  ~pj/f'a,,j) (10) 

f~,,C~j=[(f'~o-f'~,j) 2 +(f'Ao-f'a2j)2] '/= (11) 

tSA~A2J = tan- '  [(f'~o--f'~2J)/(f'~o--f'~2J)] (12) 
f a + . +  , tl 2 + t = +fa2J) +f~2~)2],/2 13) ja,A=j [(fad (fa,j ( 

+ , +  1 I I  I t  l I 8~,,2j = tan- [0fA,j +fa2j)/(fa,j +fa2J)] (14) 
a+.-  , , 2 +  t 

f x ,A2j  = [ f  a , j  + f x 2 j )  ( f  a,j -- f'A=j)2] '/2 (15)  
+ ,  - -  It '  ! 8a,a=j = tan-t [(f~,j +f'~=j)/(f'ao-f*=j)] (16) 
a - - , +  I! I! 2 I fx,a2~=[(fAd--fx2j) +(fad +f~2j)2] '/2 (17) 
- - , +  I t  I !  l I 8A,a2j = tan- '  [(fxo-fA2j)/(fA,j +/~j)] -  (18) 

One predominant type of anomalous scatterer 

If there is one predominant type of anomalous 
scatterer, the right side of (5) may be written, by use 
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of (8), 

(L~foff wd f ;..f ;.J;,(K+~)) 
x exp [i(8,2 + 8~2 + 8w2)]IF~.hF~,kF~,(G+~)[ 
x exp [i(¢~,h + ¢~,k + ¢~,(G+~))], (19) 

where the subscript 2 refers to the predominant type 
of anomalous scatterer. According to observation 2, 
for large values of [F~,hF~,kF~,ff,+r,)[ obtained by use 
of observation 1, the triplet phase invariants (~P~,h + 
q~,k + ¢~,(K+~)) will have values close to zero and the 
initial factor in (19) has a positive value. A comparison 
of (19) with (7) leads to the following General Rule 
for the case of one predominant type of anomalous 
scatterer: 

General Rule: I f  the sign of the product of  the largest 
magnitude differences, (I,.~,.~l-I.~=..I)(Io~,,d- 

is plus, the value of the 
associated average triplet phase invariant, (t~kk), is 
close tO (8~2 + 8~2 + 8w2) and, when it is minus, the value 
of the average triplet phase invariant is close to (8,,2 + 
8v2 d" 8w2 ) d- W. 

The General Rule includes the one rule, Rico, for 
isomorphous replacement (Karle, 1983) and the seven 
rules, R~no,, (n = 1 , . . . ,  7), for anomalous dispersion 
(Karle, 1984b, c). These arise when u = v = w. It also 
contains numerous other possibilities because each 
of u, v and w can independently assume any value 
of m given in Table 1 and individual values of m can 
represent several possibilities. 

The General Rule, in effect, assigns the estimate to 
all eight triplet phase invariants in (6). As a modifica- 
tion to the General Rule, the estimates may be 
assigned only to those triplet phase invariants that 
are associated with the larger products of structure- 
factor magnitudes among the eight possibilities given 
in (6), instead of to all eight of them. Improved 
accuracy may be obtained this way. 

It is a very simple matter to use the General Rule, 
Table 1 and definitions (9)-(18)to evaluate a myriad 
of triplet phase invariants. Once u, v and w are 
identified, the fifth column of Table 1 identifies the 
corresponding angles and (8,2+8v2+8~2) can then 
be computed from the appropriate definitions. In 
addition, Table 1 can be used to select the proper 
structure-factor expressions and form the triple prod- 
ucts of the largest differences. Depending upon 
whether the triple products of magnitude differences 
are positive or negative, the values of the average 
triplet phase invariants are estimated to be (8,2 + 8~2 + 
8w2) .or  (8u2 -1- 802 -~- 8w2) "~- 71", respectively. 

More than one predominant type of anomalous scatterer 

In general, the fight side of (5) can be expressed 
as the product of three sums, as given on the fight 
side of (8). The three sums could be readily evaluated 

if the heavy-atom structure were known and com- 
pared with (7). If  only the chemical composition of 
the heavy-atom structure were known, a suitable 
approximation would be the neglect of cross terms 
in the product of the three sums to give 

q+l 
(fujfvjfwj/fT, h f  jn, k f  jn,(K +~) 

j=2 
x exp [i(Suj a t- 8vj q" 8wj)]lF~.F~,kF~,(6+~)l 

[~(q~j,h + " " x exp " " tPj, k + tPj,(K+e))]. (20) 

With knowledge of the chemical composition of the 
heavy atoms, the values of the IFj.,Fj.kFj.<K÷ >I could 
be evaluated approximately on the assumption that 

n n 1/2 the quantity [IF~,hi/f~,hnj ], where nj is the number 
of atoms of type j, is the same for all j in some average 
sense. By making use of this assumption and the fact 
that the triplet phase invafiants have values close to 
zero when the products IF~,hF~.kF~.(K+~)I are large, (20) 
becomes 

q+l 
C ~ 3/2 nj fuJoJwjexp[i(8,,j+svj+swj)], (21) 

j=2 

where c is a proportionality constant of no signifi- 
cance to the application. If, then, the fight side of (5) 
is known accurately because the heavy-atom structure 
is known, or it is known approximately in terms of 
(21) when the chemical composition of the heavy 
atoms is known, the fight side of (5) is a complex 
number that can be expressed in terms of a magnitude 
and a phase. It is this latter phase, or this latter phase 
plus w, that forms the estimate of (tC~hk) depending 
upon whether the product of magnitude differences 
in (7) is positive or negative, respectively. This result 
for more than one predominant type of anomalous 
scatterer will reduce to the result for the estimate of 
average triplet phase invariants given above for the 
case of one predominant type of anomalous scatterer. 

Test calculations 

Test calculations were performed on exact data 
computed from the coordinates for cytochrome 
c550. PtCI~- from Paracoccus denitrificans (Tim- 
kovich & Dickerson, 1976). A variety of different 
types of triplet phase invariants were computed from 
combinations of isomorphous-replacement and 
anomalous-dispersion data at 2.5/~ resolution by use 
of the General Rule facilitated by Table 1. The Pt 
atoms were regarded as the predominant type of 
anomalous scatterer. The results are shown in Table 
2. For formulas requiring single-wavelength data, 
Cu Kc~ radiation was used. When two wavelengths 
were required, Cu Ka and Mo Ka  radiation were 
used. The values of [F~,[ employed in terms corre- 
sponding to cases m = 3 and 5 of Table 1 were com- 
puted with use of Mo Ka radiation from (Karle, 
1984a) 

IF~,l =0.5 w~(IG~I +lF~.al), (22) 
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Table 2. Estimates of values of a variety of triplet 
phase invariants from isomorphous replacement and 
anomalous dispersion data for cytochrome 
c550. PtC12- at 2.5 A resolution by use of the General 

Rule and Table 1 

For formulas requiring single-wavelength data, Cu Ka was used. 
When two wavelengths were required, Cu Ka and Mo Ka were 
used. The values of  [F~I employed in terms of  types 3 and 5 were 
computed from (22) with use of Mo Ka data. The symbols in 
column 2 refer to the types of magnitude differences, as defined 
in Table 1, comprising the triple products of  magnitude differences. 
Errors and average values are based on the correct values of the 
average triplet phase invariants. 

Actual Average 
Number  of  Symbol of  average error 

Row invariants calculation Estimate value (tad) 

I 981 iil  1.57 1-46 0"56 
2 970 ii I - 1.57 - 1-50 0"56 
3 748 il I 3.14 3.18 0.79 
4 775 il I 0-00 0"06 0.62 
5 1956 ii6 1.76 1.77 0-54 
6 2155 ii6 - I '38 - 1.24 0.52 
7 1853 i66 -2 .77  -2 .48  0.71 
8 1725 i66 0-37 0-53 0-58 
9 1018 116 -1"38 -1.31 0-73 

l0 972 116 1.76 I "91 0.76 
I I 1177 166 - 1-20 -0 .96  0-70 
12 1197 166 1.94 2-27 0.79 
13 466 i16 -2-95 -2 .80  0-67 
14 519 i l6 0-19 0-17 0'56 
15 2189 i l6  -2 .95 -2 .72  0.77 
16 2237 i l6 0.19 0.32 0-62 
17 524 il3 -2 .49  -2-61 0"68 
18 655 il3 0"65 0"28 0"58 
19 524 il5 -2"91 -2 .68  0-73 
20 619 /15 0-15 0-46 0.59 
21 350 ! 35 -0 .64  -0 .46  0.56 
22 335 135 2.51 2.68 0.53 

where Ap represents any particular wavelength, and 

Nno n Nan ° / i  / 2 

W ~  = j=l j=! (23) 
N n ° n  2 Nan°  

E fjh + E [ ( f ;  +f])2 +fj,2lJ 
j = l  j = l  

The symbols in column 2 of Table 2 correspond to 
the cases, m, in Table 1. The symbol ii 1, for example, 
implies that (5) is composed of two terms based on 
isomorphous replacement data and one term of case 
m = 1 for anomalous dispersion data and that the 
triplet phase invariants are being evaluated for this 
specific combination of terms according to the 
General Rule. 

All reported average errors in Table 2 are based 
on the known average values of sets of eight invariants 
as occur in (6). In forming the magnitude differences 
for application of the General Rule when m =5, 
IF~,.+F~2h I was replaced with IF~,hl +lF~2d. In the 
application of cases m =2 and 7, a comparable 
approximation would be required. 

The invariants used for the calculations in Table 2 
were composed from the largest 800 magnitude differ- 
ences for each case represented by the symbol for the 
calculation in column 2, except for rows 13, 14 and 
17-22. In the latter case, the largest 400 magnitude 
differences were used. Comparison of rows 13-16 

shows that use of 800 magnitudes increases by about 
a factor of four the number of triplet phase invariants 
obtained with a very modest increase in error. Table 
2 shows that the evaluation of many thousands of 
triplet phase invariants can be obtained for the exact 
data with use of the combination formulas implied 
by the General Rule, and that the various formulas 
distribute the evaluations to many points in the range 
-Tr to  7r. 

Concluding remarks 

A probabilistic approach to the development of 
formulas for evaluating triplet phase invariants 
composed of a mixture of phases for anomalous 
dispersion data at two different wavelengths or for 
isomorphous substitution data has been presented 
recently by Pontenagel, Krabbendam, Peerdeman & 
Kroon (1983). The combining of data for the two 
techniques and at different wavelengths bears some 
connection with the present investigation. Instead of 
an inherently probabilistic approach, however, the 
analysis here has been based on certain mathematical 
and physical characteristics of the techniques of 
isomorphous replacement and anomalous dispersion, 
although there are evident probabilistic implications 
in this approach that can be developed in the future. 

A main aspect of this investigation is the develop- 
ment of a simple General Rule for evaluating a large 
variety of triplet phase invariants, applicable when 
there is one predominant type of anomalous scatterer. 
The numerous combinations of formulas using both 
isomorphous replacement and anomalous dispersion 
data permit, in fact, the evaluation of a large number 
of triplet phase invariants as well as a large variety 
of them. The General Rule includes the rule Riso for 
isomorphous replacement (Karle, 1983) and the seven 
rules Rano.,, (n = 1 , . . . ,  7) for anomalous dispersion 
(Karle, 1984b, c) and, in effect, numerous others. With 
a modest increase in the complexity of the calcula- 
tions, it is also possible to employ the numerous 
combinations of formulas in the case that there is 
more than one predominant type of anomalous scat- 
terer. In the special case given by iii, which symboli- 
cally represents the circumstances of isomorphous 
replacement, i.e. when Riso applies, the number of 
different predominant types of heavy-atom con- 
stituents does not affect the manner of making evalu- 
ations or the nature of the evaluations. 

If there is more than one isomorphous derivative 
or if the anomalous dispersion experiments are per- 
formed at several wavelengths, there is the oppor- 
tunity to generate large numbers of additional combi- 
nations of terms from Table 1. For example, mixed 
formulas could be generated for isomorphous 
replacement by combining terms that arise from the 
various derivatives. 

The calculations presented in Table 2 have been 
made with exact data. The feasibility of applying the 
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General Rule to experimental data will evidently 
depend upon the accuracy of the experimental data. 
This is a matter for future development and detailed 
study. 

In order to apply the results of this paper to the 
case of one predominant type of anomalous scatterer, 
it is only necessary to know the chemical identity of 
the anomalous scatterer. In the case of more than one 
type of predominant anomalous scatterer, it is also 
necessary to have an estimate of the amount of each 
anomalous scatterer. 

I wish to thank Mr Stephen Brenner for writing 
the appropriate programs and making the computa- 
tions reported here. 

This research was supported in part by USPHS 
grant GM30902. 
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Abstract 

The dynamical three-beam problem in Renninger 
geometry is cast in a pseudo-two-beam formulation 
for the primary OH reflection, with the inverse of the 
excitation error ~L with respect to the third reciprocal- 
lattice point L acting as a perturbation parameter 
for modifying the true two-beam solutions. This 
approach introduces a quasi-universal angular scale 
x for measuring the onset of all three-beam effects, 
and it leads to a first-order solution that preserves all 
features of a two-beam case, but around a shifted 
Lorentz point, and with modified structure factors. 
The modified structure factors, odd in x, cause pro- 
nounced asymmetries in the diffracted intensities on 
both sides of the three-beam point, for Ixl ~ 1. In this 
range of x, the first-order solution provides a simple 
analytic expression for the integrated diffracted 
intensity vs angle, for a sequence of neighboring 
three-beam or higher-order points. This is exemplified 
for the Ge 222 primary reflection. The physics of the 
onset of the three-beam interaction, and the limita- 
tions of the first-order solution are also discussed. 

1. Introduction 

Multiple diffraction of X-rays in crystals has been 
fully described mathematically ever since Ewald's 
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(1916) dynamical theory. Its prototype, the two-beam 
case, has been exhaustively treated analytically (Laue, 
1960; James, 1963; Batterman & Cole, 1964), and 
exploited quantitatively in applications ranging from 
anomalous transmission (Borrmann, 1950) to inter- 
ferometry (Bonse & Hart, 1965). 

Except in special cases, three-beam or higher inter- 
actions have not been describable by equally simple 
analysis or by general conceptual insights into the 
nature of the normal modes of propagation. While 
full computer-implemented solutions of any specific 
problem exist (e.g. Uebach, 1973; Colella, 1974; 
Kohn, 1979), their conclusions are usually not gen- 
eralizable, unless statistical sampling of the effects of 
altering various parameters is undertaken (Hiimmer 
& Billy, 1982). 

Recent exploration of the fine structure of multiple 
interactions ranges from structure-factor phase 
determination (Post, 1979; Chang, 1982) and surface 
physics (Cowan, Golovchenko & Robbins, 1980) to 
nonlinear couplings to other waves (LeRoux, Colella 
& Bray, 1975; Juretschke & Wasserstein-Robbins, 
1982). Hildebrandt (1982) has reviewed other applica- 
tions. Further work should be stimulated by a descrip- 
tion of multiple diffraction that allows a simple 
mathematical formulation of its basic dynamical 
features, and relies as much as possible on familiar 
concepts. 
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